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ABSTRACT

As the number of applications for small unmanned (i.e., remotely operated) aircraft systems (sUAS)

continues to grow, comprehensive safety risk assessment studies are required to ensure their safe integration

into theNationalAirspace System.One source of hazards for sUAS that has not been extensively addressed is

adverse weather. A framework is presented for analyzing weather forecast data to provide sUAS operators

with risk assessment information that they can use for making risk-aware decisions. The sUASWeather Risk

Model (sWRM) framework quantifies weather hazard risk for sUAS operations in rural to urban environ-

ments using weather forecast, population density, structure density, and sUAS data. sWRM is developed

by following the safety risk management guidelines from the U.S. Federal Aviation Administration.

Development of sWRM highlights a number of aerospace and meteorological research areas that must be

addressed prior to weather risk models for sUAS becoming operational. Primary among these research areas

is developing widely available finescale (,1 km) weather forecasts and conducting extensive sUAS flight-

report studies to accurately estimate parameters of Bayesian belief network conditional probability tables

used in the proposed framework. As a proof of concept, sWRM was applied over Boulder, Colorado, using

the High-Resolution Rapid Refresh weather product. This initial demonstration of sWRM highlights the

potential effectiveness of a detailed risk assessment model that takes into account high-resolution weather

and environmental data.

1. Introduction

Unmanned (remotely operated) aircraft system (UAS)

technology continues to expand into new markets and

will soon be ubiquitous in the U.S. National Airspace

System (NAS). In April 2019, the U.S. Federal Aviation

Administration (FAA) approved the first air carrier

delivery service for limited operations in the United

States, marking the beginning of the introduction of

commercial UAS into the U.S. NAS (Martin 2019). The

FAA predicts that there could be as many as 4 million

commercial and hobby small UAS (sUAS) flying in the

United States by 2022 (Lukacs and Bhadra 2017).

Commercial and research applications of sUAS include

atmospheric measurements (Elston et al. 2011; Bonin

et al. 2013; Elston et al. 2015), precision agriculture

(Hunt et al. 2010; Zhang et al. 2012; Geipel et al. 2014),

disaster response and recovery (Tuna et al. 2014; Erdelj

et al. 2017), package delivery (Mathew et al. 2015;Murray

and Chu 2015; Thiels et al. 2015), video surveillance

(Haddal and Gertler 2010), and more. Many of these

sUAS operations will take place over moderately and

densely populated areas, posing a significant safety risk to

both people and property. The FAA and NASA com-

missioned the UAS Traffic Management (UTM) re-

search program to investigate how sUAS can be safely

integrated into the NAS (Bradford 2018). As is the case

with Air Traffic Control for in situ piloted aircraft, a

critical part of the UTM system will be the analysis and

quantification of risk. Comprehensive safety risk man-

agement (SRM) studiesmust be conducted to support the

proper development of the UTM system. One source of

safety hazards that has always plagued the aerospace in-

dustry, and that will certainly have a big impact on the

sUAS industry, is adverse weather (Ranquist et al. 2017;

Cornman and Chan 2017; Campbell et al. 2017a,b).

A 2010 FAA study of the airline industry showed that

weather was a cause or contributing factor for about

20% of all accidents between 2003 and 2007 (Aviation

Safety Information Analysis and Sharing 2010). Data in

that report were mostly from accident reports of piloted

aircraft and large, military-style UAS, with little data

coming from sUAS operations. Despite a lack of acci-

dent data for sUAS, it is obvious that their relatively

small size and weight make them more sensitive to
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adverse weather than are piloted aircraft or large UAS.

Ranquist et al. (2017) detailed the impacts that weather

can have on sUAS operations that include the follow-

ing examples: unexpected wind gusts can displace un-

manned (remotely operated) aircraft (UA) from their

flight paths, leading to a loss of control or collision with

nearby structures; turbulence can reduce the controlla-

bility of an sUAS or increase the power required to

stabilize the UA; sun glare can inhibit visibility, causing

an sUAS that requires line of sight to fly unobserved

for a period of time; and precipitation can reduce the

aerodynamic performance of aircraft. The weather

hazards posed to sUAS are exacerbated by the fact

that most of these operations take place in the atmo-

spheric boundary layer (ABL) where weather can be

highly variable and difficult to predict (Baklanov et al.

2011; Holtslag et al. 2013; Barlow 2014; Mahrt 2014).

Furthermore, surface features such as buildings, trees,

and hills can cause small-scale turbulence and wind

gusts that are not captured by conventional weather

forecasts but are important for sUAS operations. The

risks to sUAS posed by adverse weather are numerous

and profound.

To date, few regulations pertain to the operation of

sUAS in adverse weather conditions. Current FAA

regulations for sUAS operations are outlined in Part 107

of Title 14 of the Code of Federal Regulations (referred

to as ‘‘Part 107’’) (Duncan 2016). These regulations

apply to all UAweighing less than 55 lb (25kg). Part 107

rules that might be impacted by weather phenomena

include the following:

d UA must remain within visual line of site (VLOS) of

the sUAS operator,
d the maximum ground speed of an sUAS is limited to

100mi h21 (87 kt; 45m s21),
d UA must fly below 400 ft (122m) above ground level

(AGL) or within 400 ft of structures,
d weather visibility must be no less than 3 statute miles

(4.8 km) from the ground control station, and
d UA must be at least 500 ft (152m) below and 2200 ft

(671m) horizontally from clouds.

Assuming that an sUAS is flying under the above

conditions, there are still significant weather hazards

that can be encountered including sun glare, wind, tur-

bulence, gusts, extreme temperature, extreme humidity,

and solar storms (Ranquist et al. 2017). With the rapid

increase in demand for sUAS access to the NAS, it is

expected that many of these restrictions will be relaxed

by the FAA, increasing the likelihood of sUAS opera-

tions in adverse weather conditions. To ensure safe flight

under the current and future regulations, risks from

weather hazards must be studied and quantified.

The FAA outlines an SRM process in the safety

management system manual (Bristol 2019). The manual

describes the five steps of the ‘‘DIAAT’’ process: de-

scribing the system, identifying hazards, then analyzing,

assessing, and treating the risk. Describing the system

involves outlining the scope of the risk analysis being

performed. After the system is described, hazards within

the risk assessment scope must be identified. A hazard

is a condition that could foreseeably cause or contribute

to an accident. Analyzing hazard risk is accomplished by

identifying possible outcomes of each hazard, quantify-

ing outcome severity, and quantifying the likelihood of

each outcome. Severity is the consequence of a hazard’s

outcome measured in terms of the degree of loss or

harm. The characterization of each severity level for

UAS operations is shown in Table 1 (Bristol 2019). The

2019 SRMguidelines categorize severity only in terms of

the effect on persons (both bystanders and members of

the flight crew). Also shown in Table 1 are the 2012

guidelines, which include damage to the UA in its se-

verity categorization (Huerta 2012). A severity category

proposed by the authors is also presented in the table,

with the proposed dollar amounts based on current acci-

dent reporting requirements (Duncan 2016). Likelihood

is the probability of a hazard’s outcome occurring and is

rated on a scale fromA to E, withA being frequent and E

being extremely improbable. The precise characterization

of likelihood categories may vary depending on the out-

come being considered as well as the type and quality of

the data that are available for calculating likelihood.With

sufficient data, or an appropriate system model, precise

numerical cutoffs can be used to categorize likelihood.

Otherwise, subjective intuition from subject matter ex-

perts may be used to determine the likelihood of a given

event.After evaluating the severity and likelihood of each

hazard outcome, the risk is assessed as acceptable (low),

acceptable with mitigation (medium), or unacceptable

(high). The risk level is assessed using a risk matrix.

Different risk matrices may be used depending on the

risks that can be undertaken by different organizations or

operations. Figure 1 shows the risk matrix used for this

study (Bristol 2019). The risk level of the system at any

instance is taken to be the highest risk of all possible

hazard outcomes.

Several previous studies investigated safety risk anal-

ysis for sUAS operations (Öztekin and Luxhøj 2008;

Luxhøj and Öztekin 2009; Luxhøj 2013, 2015; Wackwitz

and Boedecker 2015; Ancel et al. 2017; Barr et al.

2017; Belcastro et al. 2017; Krishnakumar et al. 2017;

Washington et al. 2017b; Breunig et al. 2018; Denney

et al. 2018; Lundby et al. 2019).Wackwitz and Boedecker

(2015) outlined and demonstrated best practices for

performing a hazard analysis for sUAS. In addition to
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following the DIAAT process, they demonstrated root

cause analysis and corrective action identification in

order to mitigate hazard effects. Primatesta et al. (2020)

developed a riskmodel that produces a two-dimensional

map showing the probability of different accidents.

Their goal was to quantify risk to the population on the

ground by accounting for sUAS properties, structure

data, population data, coverings over people, and wind.

Barr et al. (2017) performed a preliminary risk assess-

ment of sUAS operations that focused on calculating the

risk while varying UA weight and configuration (mul-

tirotor, fixed wing, or remotely operated helicopter),

population density (from remote to congested), and

operational complexity [from single VLOS sUAS to

multiple beyond VLOS (BVLOS) sUAS]. They used

two approaches to evaluate risk. Their first approach

used the DIAAT process with subjective intuition for

determining likelihood. The second approach used a

Bayesian belief network (BBN) model of the sUAS to

calculate hazard outcome likelihood. Ancel et al. (2017)

used a BBN model to make real-time estimations of

risk during an sUAS operation. A number of other

studies have used BBNs for quantifying risk to sUAS

(Öztekin and Luxhøj 2008; Luxhøj and Öztekin 2009;

Luxhøj 2015; Washington et al. 2017b; Denney et al.

2018; Washington et al. 2019).

Bayesian belief networks are commonly used for risk

assessment and decision making with uncertainty. A

brief description of BBNs is given here; Fenton and Neil

(2013) provides a more thorough presentation. A BBNT
A
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FIG. 1. Risk matrix as presented by Bristol (2019).
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is a system model that consists of nodes connected in an

acyclic graph. Each node represents a specific event that

can occur in the system. These nodes can have a number

of mutually exclusive outcomes. Root or evidence nodes

are those with no parents and are defined by prior

probabilities that come from prior knowledge about the

system being modeled. Child nodes are defined by

conditional probability tables (CPTs) that relate the

probability of a node outcome to the outcomes of that

node’s parents. The values used in CPTs can come from

subject matter experts or data using machine learning.

Few SRM studies for sUAS conducted to date have

considered the impact of weather on sUAS operations.

Most studies either assume that the UA is flying in calm

conditions or consider a single input of either the like-

lihood or intensity of wind/gusts in the system model for

assessing risk. Barr et al. (2017) input a scalar value for

the likelihood that wind/gusts are present. Ancel et al.

(2017) used a low-order model of wind speed in the

ABL and preloaded wind data where the wind impacted

the risk calculation in how it affected UA controlla-

bility, kinetic energy, and trajectory in the event of a

crash landing. As previously highlighted, there are

many weather types in addition to wind or gusts that

can negatively impact the safety of sUAS operations

(Ranquist et al. 2017; Campbell et al. 2017a,b). As of this

publication, Lundby et al. (2019) have conducted the

most thorough sUAS safety study considering the im-

pact of adverse weather. Rather than assessing risk

on a low-to-high scale as discussed by the FAA, their

approach results in a go/no-go output for missions in

specific areas. Their methodology involves defining

UA-specific ranges for different weather phenomena,

outside of which the sUAS cannot operate safely. All

weather phenomena must lie within their respective

ranges over the trajectory of the UA in order to have a

‘‘go’’ output; otherwise, their software produces a ‘‘no

go’’ output. The weather phenomena ranges used in

Lundby et al. (2019) are UA specific and are generally

not described by sUAS manufacturers, so they must be

estimated. In addition, their study did not consider the

impact of weather on sUAS components aside from the

UA. More comprehensive and detailed system models

are necessary to predict the impact that adverse weather

types have on sUAS safety. A necessary and critical

component of predicting the risk due to weather is the

availability of accurate weather data on a scale that is

useful for sUAS operations.

Small UAS operators can obtain weather data from a

number of different resources. NOAA provides several

free weather forecast products that differ in domain size,

temporal resolution, and spatial resolution. One of the

leading weather products for research applications is the

High-Resolution Rapid Refresh (HRRR), which cur-

rently provides forecast data with a 3-km grid spacing

over the contiguous United States (CONUS) as well as

Hawaii and Alaska (Benjamin et al. 2016). A forecast

with 3-km resolution can be useful for quantifying sUAS

risk over relatively large areas for high-level mission

planning but is insufficient for detailed risk calculations

of specific sUAS operations, which often have an overall

footprint of less than 1km2. Weather forecasts can also

be purchased from industry providers or obtained by

running in-house targeted weather simulations. WRF

is a free weather simulation software that is developed

and maintained by NOAA and NCAR (Skamarock

et al. 2019). Several studies have demonstrated the

feasibility of using WRF (or WRF with LES) to obtain

targeted higher-resolution weather data for the support

of sUAS operations (Roseman et al. 2019; Glasheen

et al. 2019). Soon, sUAS operations in urban environ-

ments will likely require data from high-resolution LES

simulations to capture the wind and turbulence details

necessary for estimating risk (Lee et al. 2019; Li et al.

2008). Sensors integrated into sUAS are increasingly

providing real-time in situ weather data (Elston et al.

2015; Houston et al. 2016; Koch et al. 2018). Real-time

weather data could be used for dynamic calculations

of operation risk, an important capability for areas

where weather is highly variable and for BVLOS

operations.

The current study is focused on the quantification of

risk to sUAS due to adverse weather. This area of risk

assessment must be addressed as these aircraft systems

become ubiquitous in the NAS. The current work differs

from previous research by presenting a holistic ap-

proach to risk quantification from adverse weather

(National Academies of Sciences, Engineering, and

Medicine 2018). In addition to wind/gusts, the risk posed

by five other weather phenomena are accounted for.

Negative impacts to any component of the sUAS rang-

ing from UA control to operator health are considered.

An sUAS Weather Risk Model (sWRM) framework is

presented that takes into account sUAS properties,

population density, structure density, and weather fore-

cast data to estimate risk. The goal is to demonstrate a

model framework that analyzes weather forecast data to

provide risk assessment information to sUAS operators

so they can make risk-aware decisions. Section 2 presents

the development of sWRM by following the FAA SRM

DIAATprocess. Section 3 presents a brief demonstration

of sWRM and discusses several use cases. Section 4

highlights a number of research areas that must be ad-

dressed by the aerospace and meteorological communi-

ties before operational sUAS weather risk assessment

tools can be deployed.
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2. Model framework development

A systematic risk assessment procedure for aerospace

applications is given by the FAA in the DIAAT process

described above. The following sections follow each

step of the DIAAT to systematically develop a general

sUAS model framework for quantifying risk from ad-

verse weather.

a. Describing the system

The system of interest includes all the components of

an sUAS that might be exposed to adverse weather. This

includes risks to the UA, human operators, and any

supporting equipment (e.g., ground station computers

or ground vehicles). Part 107 compliance is assumed,

and in addition to weather hazards that directly impact

the sUAS, the risk to the operational environment (e.g.,

buildings or bystanders) is estimated in the event of

an accident. The sUAS is assumed to be operating un-

der nominal conditions with no hazards other than

weather (e.g., mechanical, electrical, or communica-

tion failures) considered. The current model is fo-

cused on battery-powered sUAS, because these are

currently the most common.

b. Identify hazards

Weather types that can be hazardous to sUAS are

listed in Table 2, which divides weather phenomena into

those likely to be encountered during Part 107 opera-

tions and other hazardous weather types. Forecast data

provide a predicted measure of these different weather

hazards over a geographic area. The potential outcomes

of these weather types are outlined in the next step.

c. Analyze risk

With hazardousweather types identified, the next step in

the SRM process is to identify possible hazard outcomes.

Here, outcomes are divided into intermediate hazard ef-

fects and weather hazard outcomes. Intermediate hazard

effects are those that might have a deleterious effect on

sUAS performance but are not serious enough to require

mitigation. Weather hazard outcomes are the primary

risks that must be quantified as low, medium, or high.

Adverse weather can either directly cause a weather

hazard outcome or cause a combination of intermediate

effects that lead to a weather hazard outcome. A list of

the intermediate hazard effects and weather hazard

outcomes considered in this study is shown in Table 3.

The ‘‘collision with person’’ outcome refers to the UA

impacting any person not directly involved with the

sUAS operation. ‘‘Collision with structure’’ includes

any impact with a human-built structure (house, office

building, etc.). ‘‘Collision with ground’’ refers to the

aircraft impacting the ground. ‘‘Damage to aircraft’’

refers to any damage to the UA, whereas ‘‘damage to

supporting equipment’’ encompasses any damage sus-

tained by hardware or software that supports UA flight.

‘‘Harm to operator’’ refers to any injury to persons di-

rectly involved in the operation of the sUAS. Future

development of this framework could include more

weather types and intermediate effects and could fur-

ther subdivide weather hazard outcomes.

After identifying possibleweather hazard outcomes, the

severity and likelihood of these outcomes must be quan-

tified. This calculation is a function of the weather, sUAS

properties, and the operation environment. Important

sUAS and environment properties that are relevant

when calculating risk and likelihood are shown in Tables

4 and 5, respectively. Properties of sUAS that are im-

portant for predicting operation risk can be either gen-

eral properties of the system or mission specific, leading

to two different weather risk assessment approaches.

The first approach only considers general sUAS prop-

erties.With gridded forecast data over a given area, risk

is evaluated at each forecast data point using other local

environment data (population density, building den-

sity, etc.) and general UA data (cruise speed, maxi-

mum speed, disturbance rejection, etc.). This results in

a spatial map over a specific geographic area showing

where and when the risk is high, medium, or low. The

second approach considers a specific sUAS flight path.

The flight path includes a starting time, waypoints, and

TABLE 2. Hazardous weather types that might be encountered

during Part 107 operations or extraordinary operations.

Part 107 operations Extraordinary operations

Mean wind Rain

Gusts Fog/clouds

Wind shear Snow

Turbulence Hail

Extreme temperature Lightning

Extreme humidity

Sun glare

Solar storms

TABLE 3. Possible effects and outcomes of weather hazards.

Intermediate hazard effects Weather hazard outcomes

Loss of control Collision with person

Diminished aerodynamic

performance

Collision with structure

Reduced battery life Collision with ground

Reduced operator

effectiveness

Damage to aircraft

Loss of communication Damage to supporting equipment

Harm to operator
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air or ground speed of the UA along each flight path

segment. Forecast and environment data near the planned

flight path (both in time and position) could be coupled

with the expected aircraft state along the flight path to

estimate the risk of that specific mission. This type of risk

assessment could consider properties such asUAdirection

relative to the wind and mission duration; factors that are

not considered in the first risk assessment approach. A

path-specific risk assessment would be most appropriate

when very high-resolution weather data (e.g., ;100m or

finer) are available over the flight path region. Such high-

resolution forecasts have been used in coordination with

sUAS operations (Nolan et al. 2018; Glasheen et al. 2019;

de Boer et al. 2020). However, since most readily acces-

sible forecast datasets have a relatively coarse resolu-

tion, the current study focuses on the first approach to

risk assessment where only general sUAS properties are

considered.

Washington et al. (2017a) present an extensive review

of models that have been used to estimate ground im-

pact risk for sUAS. These previous models differ in the

outcomes they consider, the estimation of impact kinetic

energy, and the quantification of damage or injury se-

verity. The following two sections explain the develop-

ment of the severity and likelihood models in sWRM.

The FAA SRM guidelines emphasize that the calcula-

tions for severity and likelihood should be independent.

This means that the severity and likelihood models can

run in parallel, each having the same set of inputs but

performing different calculations.

1) QUANTIFYING SEVERITY

Table 3 lists the possible final negative outcomes

of a weather hazard. With the exception of damage to

supporting equipment and harm to the operator, these

hazards are largely a function of the UA kinetic energy

at the time of impact. The UA kinetic energy is a func-

tion of its speed and mass. Impact speed can be a

function of the total wind speed (mean wind plus

gusts), the vertical distance that the UA falls, UA

drag, and the UA speed when last in controlled flight.

Previous studies have estimated UA impact speed in a

variety of ways including: setting impact speed equal

to the terminal velocity of the UA in free fall (Ancel

et al. 2017; Barr et al. 2017; Arterburn et al. 2017);

setting impact speed equal to 1.4 times the maximum

UA speed (Dalamagkidis et al. 2008); assuming the

UA follows a ballistic trajectory to the ground starting

from a specified altitude and speed (La Cour-Harbo

2019; Kim 2019).

The severity model in sWRM estimates impact speed

in several ways, depending on what is being impacted

(person, structure, or ground) and occupation of the

area where the collision occurs (from remote to con-

gested). Collisions occur after the UA experiences a loss

of control. It is assumed that the loss of control is cata-

strophic in the sense that the UA cannot glide to a safe

location or be slowed by a parachute, although these are

mitigation strategies that can be added to the current

framework in future studies. For collisions with the

ground, persons, and buildings in suburban to remote

areas, the UA impact speed is calculated by assuming it

follows a ballistic trajectory. For the worst-case sce-

nario, the UA is assumed to follow a two-dimensional

trajectory that is aligned with the total wind. (To ex-

pand this framework to include trajectory-specific risk

calculations, a three-dimensional ballistic trajectory

could be calculated.) The two-dimensional equations

of motion are written in a reference frame relative to

the total wind,

m _v52mg2

�
1

2
rAC

D

�
v2v̂ , (1)

where m is the UA mass, _v the acceleration, g is ac-

celeration due to gravity, r is the air density, A is the

cross-sectional area of the UA,CD is the constant drag

coefficient, v is the velocity of theUA, and v̂ is a unit vector

TABLE 4. List of sUAS properties that may be important when

calculating the severity and likelihood of different hazard

outcomes.

sUAS properties Units or type

General

Aircraft mass kg; lb

Aircraft configuration Multirotor; fixed wing; helicopter

Max airspeed m s21; ft s21

Cruise airspeed m s21; ft s21

Min airspeed m s21; ft s21

Max ground speed m s21; ft s21

Cruise alt AGL m; ft

Automatic control Yes/no

Disturbance rejection None; stock; advanced

Mission specific

Velocity m s21; ft s21

Mission duration s; min; h

Battery life mA h

Flight alt AGL m; ft

TABLE 5. Environment properties that may be important when

calculating the severity and likelihood of different hazard outcomes.

Environment

property Value

Population density Remote, rural, suburban, urban, congested

Structure density Remote, rural, suburban, urban, congested

Coverings over

people

Percent covered/uncovered
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pointing in the direction of the UA velocity. Equation (1)

is written in horizontal and vertical components as

m _u52

�
1

2
rAC

D

�
u2û and (2)

m _y52mg2

�
1

2
rAC

D

�
y2ŷ , (3)

where _u and _y are the horizontal and vertical accelera-

tion components, u and y are the horizontal and vertical

velocity components, with the sign of û and ŷ chosen

such that the drag force is in the direction opposite of the

UA velocity. Equation (3) can be integrated twice to

find an analytical expression for the time that it takes for

the aircraft to fall a distance h,

t5
y
T

g
cosh21[exp(gh/y2T)] , (4)

where yT is the UA terminal speed given by

y
T
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mg/(rAC

D
)

q
.

Expressions for the horizontal and vertical velocity

components at time t are found by integrating Eqs. (2)

and (3), respectively,

u5
u
0
m

m1 u
0
0:5rAC

D
t

and (5)

y5 y
T
tanh

�
2

g

y
T

t

�
, (6)

where u0 is the UA cruise speed. It is assumed that the

UA vertical speed is negligible at the beginning of the

ballistic trajectory (when the loss of control occurs). This

is reasonable for cruise butmay result in significant error

for other phases of flight. Assuming negligible vertical

wind near the ground, the total horizontal wind magni-

tude W is then added to the horizontal velocity com-

ponent to shift this calculation into the reference frame

of the ground. Vertical wind near the ground can be

significant under certain conditions; information about

these situations should be included in future sWRM

implementations. The kinetic energy KE can then be

readily calculated:

KE5 0:5m[(u1W)2 1 y2] . (7)

For collisionswith the ground and persons, it is assumed

that the UA falls a height h equal to the cruise altitude

(AGL) of the operation. In suburban to remote envi-

ronments, it is assumed that the UA impacts buildings at

an average height of 20 ft (6m; the height of a two-story

building). This means that the trajectory calculation is

performed with h equal to the cruise altitudeminus 20 ft.

Note that no distinction is made in the model for

whether the impact is with the side or roof of the

building. This level of fidelity would be appropriate for

trajectory-specific risk assessments with detailed build-

ing information. In urban environments, it is assumed

that sUAS operations will take place between tall

buildings. If a loss of control event takes place there, the

UA will likely impact the side of a building and only

fall a short distance after losing control. This means that

an appropriate and conservative estimate for impact

speed could be the cruising airspeed plus the total wind.

Models relating impact kinetic energy to human in-

jury have been developed (Clare et al. 1975; Sturdivan

et al. 2004; Bir et al. 2004; Bir and Viano 2004; Magister

2010). The blunt body criterion BC is used here (Clare

et al. 1975; Bir and Viano 2004; Magister 2010),

BC5 ln

�
KE

kDM2/3

�
, (8)

where k is the coefficient for chest wall thickness

(;0.711 for male; ;0.593 for female), D is the charac-

teristic impact diameter of the UA (cm), and M is the

mass of the person being impacted (kg). The BC is lin-

early related to the Abbreviated Injury Scale (AIS)

(Sturdivan et al. 2004; Magister 2010):

AIS5 1:3283BC1 0:603. (9)

Table 6 shows the mapping of AIS values onto a 1–5

scale to relateAIS to severity in sWRM.Under Part 107,

the maximum weight (55 lb; 25 kg) and ground speed

(100mi h21; 45m s21) result in a maximum kinetic en-

ergy of 18 500 ft lb (25 kJ). The AIS value for a woman

weighing 165 lb (75 kg) hit by a UA with this kinetic

energy with an impact diameter of 20 cm is 6.5. This

value is considered unsurvivable, highlighting the need

for risk assessment studies even for sUAS in compliance

with Part 107. This injury model only considers head-on

impacts with a person’s chest. Operational versions of

sWRM should subdivide the ‘‘collision with person’’ out-

come into ‘‘chest-collisionwith person’’ and ‘‘head-collision

TABLE 6. Discretization relating the Abbreviated Injury Scale

(AIS) to severity level of collisions with people.

Severity AIS range

Minimal ,1.5

Minor 1.5–2.5

Major 2.5–3.5

Hazardous 3.5–4.5

Catastrophic .4.5
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with person,’’ calculating the likelihood and severity for

each independently.

The authors are unaware of any generalized models

that relate impact kinetic energy to damage severity for

impacts with the ground or structures. Therefore, in-

formed, but arbitrary kinetic energy cutoffs are used to

relate impact kinetic energy to damage severity for these

outcomes.

For simplicity, the severity of damage to supporting

equipment and harm to operator are set to constant

values of 4 (minor) and 3 (major), respectively.

2) QUANTIFYING LIKELIHOOD

As described in the introduction, several risk assess-

ment studies have used BBNs tomodel sUAS and predict

the likelihood of hazard outcomes. A BBN is constructed

here for an sUASexposed to several weather phenomena.

Whereas earlier work only used a single node for adverse

weather inputs, the sWRM BBN model employs nine

nodes to more realistically predict the risk due to adverse

weather types. Figure 2 shows the detailed BBN used to

calculate the likelihood of hazards due to weather.

There are five different categories of nodes in the

presented BBN: weather hazard data (dark blue), sUAS

properties (red), environment properties (green), interme-

diate hazard effects (light blue), and weather hazard out-

comes (yellow). The first three categories (weather hazard

data, sUAS properties, and environment properties) are

evidence nodes.Outcomes for weather hazard data nodes

come directly from forecast data (and maximum UA

speed as discussed below). Outcomes for sUAS property

nodes are given by known properties of the airframe,

and communications and control subsystems of the

sUAS. Environment properties are known from pop-

ulation and structure density data. The last two node

types (intermediate hazard effects and weather hazard

outcomes) are child nodes whose outcomes are condi-

tioned on their parent’s outcomes. A CPT for each child

node defines this conditional relationship. A description

for exactly how child node outcomes are calculated can

be found in Fenton and Neil (2013).

One of the difficulties in creating a generalized model

is the wide range of capabilities of current sUAS; sWRM

accounts for this range in two ways. First, sUAS char-

acteristics are included as evidence nodes for the BBN

(red nodes); three UA characteristics are included: UA

configuration, disturbance rejection capability, and au-

tomatic control. These characteristics are included be-

cause they are the most distinguishing features of sUAS

that differentiate their behavior in adverse weather.

Second, diverse UA capabilities are taken into account

by scaling mean wind and gusts with the maximum UA

speed (relative mean wind and relative gust nodes). The

reasoning for this scaling is that a typical UA has a

maximum speed ranging from 3 to 40m s21 (Ranquist

et al. 2017). A UAwith a maximum airspeed of 30ms21

FIG. 2. Bayesian belief network used to calculate the likelihood of hazard outcomes given forecast data.
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will be little impacted by a mean wind of 10m s21.

However, a UA with a maximum airspeed of 5m s21

would be entirely overcome by the same mean wind.

This example illustrates that UA respond to a relative

mean wind speed scaled by the maximum airspeed.

Similar logic can be applied for gusts with the caveat

that, an sUAS response to gusts is also a function of the

UA maximum acceleration from control actuation and

propulsion. This acceleration dependence is currently

not taken into account in sWRM. While the UA may

respond primarily to relative mean wind and gust, the

magnitude of mean wind and gusts must also be taken

into account for the safety of the sUAS operators. Some

UA may be able to fly in winds approaching 25m s21,

but a sustainedwind of this speed could pose a risk to the

sUAS operators on the ground.

Operator effectiveness is defined as the ability of the

operator or autopilot to maximally control the UA move-

ment. As the total wind approaches the maximum speed of

theUA, theUA loses the ability to traverse upwind relative

to the ground. In addition, ahigh relative gustmightdisplace

theUAfrom its flight path, regardless of the reaction timeof

the controller.

Weather can have a major impact on UA battery

capacity and performance. As turbulence intensity

increases, power needed to stabilize the UA also in-

creases, reducing the effective battery capacity available

for other mission requirements. In addition, extreme

humidity and temperature can be detrimental to battery

life and performance (Byun et al. 2017; Shim et al. 2002).

Under Part 107 restrictions, the only potential risk to

aerodynamic performance is icing on the UA wings or

rotor blades. The likelihood of icing is a function of

temperature and humidity (Schultz and Politovich 1992).

Typical mission support equipment consists largely of

electronics that can be damaged by extreme tempera-

tures, condensation, and a highly charged atmosphere.

Because Part 107 effectively requires that sUAS cannot

fly near convective storms, the only major source of at-

mospheric charge is solar storms. Solar storms can also

have a detrimental impact on GPS. Note that lightning

is still possible (although unlikely) under Part 107 re-

strictions and should be considered as a weather hazard

in future studies.

Loss of control (LOC) could be considered the most

important intermediate hazard effect, as it leads to four

of the six weather hazard outcomes, including the most

severe outcomes. To reduce the number of CPT pa-

rameters, three independent types of LOC events are

considered: direct LOC, secondary LOC, and equip-

ment failure LOC. Direct LOC occurs when adverse

weather directly impacts the UA, causing the pilot (or

autopilot) to immediately lose control. Secondary LOC

occurs when weather degrades different aspects of the

UA (controllability, available battery capacity, aerody-

namic performance) possibly leading to LOC. Equipment

failure LOC occurs when adverse weather does not di-

rectly impact the UA but damages equipment necessary

for UA flight (communication, measurement devices,

GPS, etc.). The main LOC node then has a simple CPT

(consisting of only 0s and 1s) that effectively states that a

LOC occurs if any of the previous types of LOC occur.

This breakup of LOC into independent events reduces

the number of CPT parameters that need to be defined

from 75 000 to 208. This reduction in the number of

parameters greatly improves the tractability of esti-

mating these parameters by intuition or data. The ob-

vious downside of this method is that these different

types of LOC are not independent, so the current

model may not properly predict the likelihood of all

possible event combinations.

After the acyclic graph is constructed, the CPTs for

the child nodes are assigned. The number of indepen-

dent parameters N required for a given CPT is given by

N5 (n2 1)P
P

i51

p
i
, (10)

where n is the number of outcomes of the current node,

P is the number of parent nodes, and pi is the number of

possible outcomes for the ith parent node. The total

number of independent CPT parameters for the BBN in

Fig. 2 is 1593. This BBNmodel was constructed with the

goal of having the parameters of the CPT be indepen-

dent of the specific sUAS. While the sWRM BBN does

not fully realize this goal, it does achieve a high degree of

generalization by explicitly including in the BBN the

sUAS properties that aremost relevant to their behavior

in adverse weather. Further generalization could be

accomplished by simply including more sUAS proper-

ties into the model. Some of these additional properties

could include positioning technique (VLOS, single/

multiple GPS, etc.), UA characteristic length (for de-

termining the most important turbulence scales), or

maximum UA acceleration (for more accurately mod-

eling the response to gusts).More detailed inputs such as

these are not included in sWRM because they are as-

sumed to have a much smaller effect on the differenti-

ation between sUAS behavior than the properties that

are included. Because of the generalized model con-

struction, the 1593 CPT parameters are approximately

constant for all sUAS, and do not need to be redefined

by each sUAS operator. Parameters for the CPTs can be

estimated from intuition or experience with the system,

or machine learning with a sufficient amount of data.

Unfortunately, as of this publication there is not a collection

JULY 2020 ROSEMAN AND ARGROW 1259

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/7/1251/4982047/jtechd200009.pdf by guest on 29 August 2020



www.manaraa.com

of flight-report data required to estimate the parameters

with machine learning (see section 4). For the proof of

concept presented below, parameters for this BBN were

estimated from intuition about the behavior of the sys-

tem; these estimated parameters should not be used in

an operational setting.

A simple demonstration of the BBN systemmodel for

determining likelihood of weather hazard outcomes is

shown in Fig. 3. This example was constructed to show

the extensive functionality of the BBN framework for

likelihood calculations. The bar graphs in each of the

nodes help to visualize the likelihood that each of the

node outcomes occur (color of the bars have no inherent

meaning). It is possible that predictions for all weather

input nodes may not be available. When this is the

case, a distribution of likely values for unknown nodes

can be used. This is demonstrated with the relative gust,

solar storm, and gust nodes.

The BBN estimates the probability of different out-

comes, which can be interpreted as the number of times

the event is predicted to occur in a given number of

operations that experience that same system state. For

example, if the BBN calculates that the probability of

colliding with a building is 1%, that means that 1

in every 100 sUAS operations that experience that

particular system state will collide with a building.

The probabilities produced by the BBN must be re-

lated to the likelihood categories shown in the risk

matrix in Fig. 1. In the FAA safety management sys-

tem manual (Bristol 2019), precise numerical defini-

tions are given for the likelihood categories. The CPT

parameters estimated by the authors appear to be

highly conservative relative to the likelihood cate-

gories from the FAA. For the purposes of the model

proof of concept shown below, the likelihood cate-

gories were adjusted in order to produce interesting

results but are not meaningful in a practical sense. As

mentioned above and in section 4, further research is

required to more accurately estimate the CPT parame-

ters of the BBN.

d. Assess risk

The models outlined above predict outcome severity

on a scale from minimal (5) to catastrophic (1) and

FIG. 3. Example demonstrating the func-

tionality of the BBN model. Red nodes are

sUAS properties, dark-blue nodes are weather

hazard data, green nodes are environment

properties, light-blue nodes are intermediate

hazard effects, and yellow nodes are weather

hazard outcomes.
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predict likelihood on a scale from frequent (A) to ex-

tremely improbable (E). Assessing the risk consists of

plotting severity and likelihood values in a risk matrix,

with risk labeled as low, medium, or high. The risk ma-

trix used in this study is shown in Fig. 1, following the

method of Bristol (2019).

e. Treat risk

Treating or mitigating the risk is the procedure to

reduce the risk to an acceptable level. For situations

where the risk level exceeds the acceptable value during

the execution of a flight, the system must dynamically

respond in real time to mitigate that risk. The current

study is focused on quantifying the risk of planned op-

erations before they begin. Real-time risk assessment

technology is discussed in section 3. Options for miti-

gating risks in a planned operation are to

1) modify the sUAS to be more robust to adverse

weather,

2) adjust the flight path to avoid high risk areas,

3) move the original flight time to before or after an

adverse weather event, or

4) cancel the proposed flight.

These treatment options could be performed manu-

ally after a risk assessment is performed or could be

accomplished by high-level automated planning algorithms.

Intricate path-planning and decision-makingmethods could

be used to plan optimal flight paths that take into account

the acceptable risk of a given sUAS as has been previously

demonstrated (Guglieri et al. 2015; Castagno et al. 2018;

Primatesta et al. 2019, 2020). The details of how to adjust

the proposed flight plan are highly dependent on the

specific operation and therefore are not included

in sWRM.

3. Proof of concept and sWRM use cases

As a proof of concept, sWRM was applied to Boulder

County, Colorado. Weather data for this demonstra-

tion come from NOAA’s HRRR weather product. The

HRRR is an 18-h forecast updated hourly. Most output

data have an hourly output resolution, with some fields

available every 15min. The HRRR is chosen because of

its high quality and its availability to the general public.

The 3-km resolution of the HRRR is insufficient for

detailed trajectory modeling or path planning but may

be useful for high-level mission planning over a rela-

tively large area. Only the lowest four altitude layers of

the HRRR are relevant to sUAS operations under Part

107 that take place below 400 ft (120m) AGL. For the

current demonstration, only the lowest layer of weather

data (;10m AGL) and a single forecast hour is used, so

results are those for just a snapshot of time and opera-

tions within about 30m of the ground. Figures 4 and 5

show the HRRR mean wind speed and gusts, respec-

tively, used as inputs to sWRM for this proof-of-concept

demonstration. Temperature, humidity, turbulence, and

wind shear data from the HRRR were also used in this

study but for brevity are not plotted.

Structure density data used here are from the Global

Human Built-Up and Settlement Extent (HBASE)

dataset from Landsat (Wang et al. 2017). At each geo-

graphic grid point, this dataset gives the probability that

HBASE is present with spatial resolution of 30m. This

database does not provide ‘‘type’’ information about the

HBASE that could be present at each grid point (roads,

wood structures, glass buildings, building height, etc.).

Databases with this level of detail may be available over

specific areas, but the authors are unaware of a database

with this level of detail for the CONUS. Future sUAS

risk models could use more detailed datasets over the

FIG. 4. Mean wind over Boulder County from HRRR forecast.

JULY 2020 ROSEMAN AND ARGROW 1261

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/7/1251/4982047/jtechd200009.pdf by guest on 29 August 2020



www.manaraa.com

specific area being considered. Figure 6 shows the Boulder

County HBASE from this Landsat dataset. The pop-

ulation density data used here come from the Gridded

Population of the World, version 4 (GPWv4), dataset

(Center for International Earth Science Information

Network 2018) that provides an estimated number of

persons per square kilometer on a 30 arc s grid (;1 km at

equator). This dataset is based on where people per-

manently live. It does not provide information about the

movement of people over time or whether or not there

are coverings over people. While this dataset provides a

good demonstration of estimating the risk to bystanders,

future studies should incorporate dynamic models of

person density that take into account changes due to the

time of day, season of the year, special events, covering

over people, etc. Local databases may be able to provide

some of these higher-order details, and future studies

should address how these added details will change the

risk calculation. Figure 7 shows the Boulder County

population density from the GPWv4 dataset.

The DJI Inspire 2 quadcopter sUAS is used for this

proof of concept, and its properties are given in Table 7.

Results from sWRM are shown in Figs. 8 and 9. Figure 8

demonstrates the primary goal of this technology: to

provide weather-aware spatial riskmaps for planning sUAS

operations. The map shows where the risk is high (red),

medium (yellow), or low (green). Figure 9 shows which

hazard outcome has the highest risk. This information can

help guide risk mitigation strategies for operators. The

general trends seen in the figure are to be expected.

Over populated areas (right side of the map), the risk is

generally higher because of the increased likelihood of

colliding with persons or structures. The risk decreases

over rural to remote areas. However, there are several

FIG. 6. Human Built-Up and Settlement Extent (HBASE) over Boulder County from Landsat.

FIG. 5. Gust over Boulder County from HRRR forecast.
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features the model produces that may not be so intuitive

without such a systematic risk estimation tool.

The area over the continental divide (left side of the

map) shows an increased risk for damage to aircraft and

collision with person. In this area, the population and

building density are both remote, so one may presume

a low risk for collision with person. The medium risk

calculated for collision with person is due to the high

total wind speed in these areas (see Figs. 4 and 5), which

causes the severity of collision with person to increase

to a catastrophic severity level, where the risk can only

be medium or high (see Fig. 1).

Harm to operator appears to be a prominent hazard

on the right side of the map. This is due to particularly

high temperatures, which were caused by a large long-

wave ridge that dominated the upper-level circulation

over the CONUS during this time (;358C) (National

Centers for Environmental Information 2018). Part 107

currently requires VLOS between the operator and

aircraft. This generally requires the operator to be out-

side, exposed to the elements. While it may be a con-

servative assessment, sWRM is assigning a medium risk

for harm to operator because of the possibility of heat-

related incapacitation (Sheng et al. 2018).

In addition to this proof of concept, the sWRM

framework has a number of possible use cases. The risk

model framework presented can be used by the meteo-

rological community for performing sensitivity studies to

determine the most important weather types in different

geographic areas. This information will help meteorol-

ogists tune high-resolution weather forecasts to produce

accurate predictions for the weather types most relevant

to sUAS.

The current framework could be expanded to esti-

mate risk in real time. As mentioned in the introduction,

some weather data could be provided by sensors on

the UA. Real-time in situ weather data could allow

sUAS to dynamically calculate their current risk state.

Weather data inputs (wind, temperature, etc.) could

come from sensors on the UA or nearby weather sta-

tions. Any weather type not directly sensed could be

estimated or come from a forecast dataset. Other UA

properties (altitude, speed, etc.) would come directly

from the current UA state. Environment properties

(structure and population density) could also be sensed

if the sUAS is equipped with a camera and appro-

priate image processing software. Real-time dynamic

risk assessment would be of great value for BVLOS

operations and for urban operations where weather and

environment inputs are highly variable. Enabling

technologies for dynamic risk assessment are low-

cost and accurate onboard weather sensing systems.

Data from these onboard systems must be quickly

processed to provide sUAS operators with time-

relevant risk information.

FIG. 7. Population density of Boulder County from GPWv4.

TABLE 7. Properties of the DJI Inspire 2 sUAS used in the case

study (asterisks indicate estimated values).

Property Value

Aircraft mass (kg) 3.6

Aircraft configuration Multirotor

Max airspeed (m s21) 26

Cruise airspeed (m s21) 10

Cruise alt AGL (m) 10

Automatic control Yes

Disturbance rejection Stock

Drag coef* 0.1

Cross-sectional area* (m2) 0.1

Impact diam* (m) 0.2
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In addition to the aerospace and meteorological

communities, comprehensive sUAS risk assessment

technologies that include the impact of weather could be

of great use for lawmakers, regulators, and insurance

companies. The presented technology could be used

for sensitivity studies investigating things such as the

behavior of different aircraft configurations (e.g., fixed

wing vs multirotor) in different weather environments

(e.g., mountain vs plain regions or varying turbulence

levels). This could help to guide region-specific and

weather-aware regulations and insurance policies

for sUAS.

FIG. 8. Map of predicted sUAS risk level over Boulder County.

FIG. 9. Map showing the most hazardous outcome at different locations in the domain.

Asterisks indicate regions for which there are at least two outcomes at the highest

risk level.
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4. Enabling research thrusts for operational sUAS
weather risk assessment

The development of sWRMhighlights several research

areas that must be addressed prior to the deployment of

a fully operational weather hazard risk assessment tool;

some enabling research thrusts are now discussed.

Many sUAS operations have a geographic footprint

on the order of one square kilometer or less. The reso-

lution of the HRRR, and other commonly available

weather products, might be insufficient for risk assess-

ment for these missions, especially where weather is

highly variable in space and time, such as urban envi-

ronments, requiring forecasts on smaller scales. Because

of the general susceptibility of sUAS to turbulence and

gusts, an important feature of these finescale forecasts

is accurate near-surface turbulence and gust modeling,

thus driving the research need for finescale, low-altitude

atmospheric modeling.

A fundamental aspect of the risk calculation is quan-

tifying the likelihood of an outcome. Outcomes from

weather are highly dependent on uncertainty in the

forecast. The BBN approach to quantifying likelihood

can directly incorporate forecast uncertainty provided

by the weather product. For example, if a weather

product predicts a single value for turbulence at any

given location, then the BBN interprets the probability

of that turbulence level as 100%. However, if the fore-

cast produces a distribution of possible values, that dis-

tribution can be a direct input to the weather nodes of

the BBN. This is illustrated in Fig. 3 with the relative

gust, solar storm, and gust nodes. The Texas Tech WRF

Ensemble Modeling System and the HRRR Ensemble

(Ancell 2013; Dowell et al. 2018) are twoweather products

that include forecast uncertainty. As implied in their

names, both of these products produce a measure of

forecast uncertainty by running simulation ensembles with

stochastic parameter perturbations. However, neither

of these products have resolution less than 3 km.

Efficiently computed uncertainty statistics for high-

resolution forecasts is a meteorological and compu-

tational challenge and is an enabling technology for

operational risk assessment tools.

A central feature of sWRM is the BBN used to esti-

mate outcome likelihood. The accuracy of this network

is dependent upon the accuracy of the parameters used

in CPTs. Before this BBN can be used in an operational

setting, these parameters must be derived from data.

Extensive sUAS flight-report studies, especially for flights

in varying weather conditions, are necessary to accurately

estimate the CPT parameters. The general construction of

the sWRMBBNprovides an opportunity for the collection

of large amounts of data for estimating these parameters.

Operations under Part 107 are assumed in the sWRM

framework, so weather phenomena such as lightning or

precipitation are currently not included since they are

unlikely to occur with regulatory compliance. An opera-

tional weather risk model should either add the influence

of non–Part 107weather types or be accompanied by some

auxiliary system to ensure an sUAS operator complies

with the weather-related Part 107 rules.

5. Conclusions

Comprehensive safety risk management studies are

needed for the safe integration of sUAS into the NAS.

The sensitivity of sUAS to weather will be a factor in

mission disruptions and accidents. The sWRM weather

risk model framework quantifies risk to sUAS opera-

tions from adverse weather. The framework is based on

FAA SRM guidelines and employs a Bayesian belief

network to calculate hazard likelihood; hazard severity

is calculated as a function of aircraft impact kinetic en-

ergy. A proof-of-concept sWRM example shows the

usefulness of, and need for, comprehensive risk models

that account for adverse weather conditions. The de-

velopment of this model framework highlights several

meteorological and aerospace research areas that must

be addressed before an operational sUAS weather risk

assessment tool can be deployed. Widely available fine-

scale weather forecasting, including near-surface turbu-

lencemodeling, is necessary for risk assessment of specific

sUAS operations. Extensive flight-report studies of sUAS

in varying weather conditions are vital for accurately es-

timating parameters for Bayesian belief network condi-

tional probability tables used in sWRM.
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